Kyaw Than Oo
*Corresponding author: kyawthanoo34@outlook.com
Abstract
Upper Myanmar region, roughly located between 21˚00' N and 28˚30' N latitude and 92˚ 10' E and 101˚ 11' E longitude, is the place where the winter cold season contributes ~2% of the annual total rainfall. The rainfall associated with Western disturbances is small in quantum but veritably important for the cold season crops, maintaining the glaciers over the Putao region, hydropower generation for the whole country and hazard of Jade mining of the Upper Myanmar area. This study aims to find interannual variability and related ocean-atmospheric pattern link with Upper Myanmar cold season rainfall by using great-resolution reanalysis data (ERA5) during 1990-2020. Correlation analysis to test the validation of ERA5 gridded data with the observed data from 25 stations across Myanmar, showed a strong correlation value in the same period that enough reliable for best analysis results. An anomalous anticyclonic (cyclonic) circulation persists over the southern part of the Bay of Bengal and South China sea during wet (dry) years. Also, the warming over the Indian Ocean and the cooling over the Tibetan plateau region correspond to south-north transport of moisture, ensuing in positive rainfall anomalies over the study region during winter. The wide patches of strong negative (positive) correlation are found over the Pacific Ocean, the Atlantic Ocean, Mediterranean Sea (MED), Arabian Sea (ARS), and Red Sea (RED) during wet (dry) years. The link implies that NPO, SPO, and MED have an impact on the winter rainfall inter-annual variability. In addition, the cooling (warming) over the Indochina and western Pacific regions influences the Hadley and Walker circulation bringing above (below) normal rainfall, respectively, over Upper Myanmar. The reply of indices (PO, MED, NINO3.4, IOD, and WDs) on winter rainfall, necessary to further investigation. The complete analysis of winter rainfall aids in the understanding of past extreme events as well as the forecasting and monitoring of drought and floods in Upper Myanmar.
Keywords: Myanmar rainfall, Sea surface temperature, Western disturbances, Winter rainfall
DOI: https://doi.org/10.3126/josem.v1i3.48001
Received 20.06.2022; Revised 19.08.2022; Accepted 29.08.2022
Cite This Article: Oo, K.T. (2022). Interannual Variability of Winter Rainfall in Upper Myanmar. Journal of Sustainability and Environmental Management, 1(3), 344-358. doi: https://doi.org/10.3126/josem.v1i3.48001
References
Alexander, M. A., Bladé,
I., Newman, M., Lanzante, J. R., Lau, N. C., & Scott, J. D. (2002). The
atmospheric bridge: The influence of ENSO teleconnections on air-sea
interaction over the global oceans. Journal
of Climate, 15(16), 2205–2231.
https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2
Aung, L. L., Zin, E. E.,
Theingi, P., Elvera, N., Aung, P. P., Han, T. T., Oo, Y., & Skaland, R. G.
(2017). Myanmar Climate Report. Norwgian
Meterological Institute, 9, 105.
Bjerknes, J. (1969).
Monthly Weather Reyiew Atmospheric Teleconnections From the Equatorial Pacific.
Monthly Weather Review, 97(3),
163–172.
http://journals.ametsoc.org/doi/abs/10.1175/1520-0493(1969)097%3C0163:ATFTEP%3E2.3.CO;2
Cannon, F., Carvalho, L. M.
V., Jones, C., & Bookhagen, B. (2015). Multi-annual variations in winter
westerly disturbance activity affecting the Himalaya. Climate Dynamics, 44(1–2), 441–455.
https://doi.org/10.1007/s00382-014-2248-8
Chen, M., & Kumar, A.
(2018). Winter 2015/16 atmospheric and precipitation anomalies over North
America: El Niño response and the role of noise. Monthly Weather Review, 146(3), 909–927.
https://doi.org/10.1175/MWR-D-17-0116.1
Dimri, A. P. (2006).
Surface and Upper Air Fields During Extreme Winter Precipitation Over the
Western Himalayas. Pure and Applied
Geophysics, 163(8), 1679–1698. https://doi.org/10.1007/S00024-006-0092-4
Dimri, A. P. (2013).
Relationship between ENSO phases with Northwest India winter precipitation. International Journal of Climatology, 33(8),
1917–1923. https://doi.org/10.1002/joc.3559
Dimri, A. P. (2014).
Sub-seasonal interannual variability associated with the excess and deficit
Indian winter monsoon over the Western Himalayas. Climate Dynamics, 42(7–8), 1793–1806. https://go.gale.com/ps/i.do?p=AONE&sw=w&issn=09307575&v=2.1&it=r&id=GALE%7CA380747281&sid=googleScholar&linkaccess=fulltext
Dimri, A. P., Niyogi, D.,
Barros, A. P., Ridley, J., Mohanty, U. C., Yasunari, T., & Sikka, D. R.
(2015). Western Disturbances: A review. Reviews
of Geophysics, 53(2), 225–246. https://doi.org/10.1002/2014RG000460
FAO, & AVSI Foundation.
(2019). Climate Smart Agriculture in
Myanmar.
Hamal, K., Sharma, S.,
Baniya, B., Khadka, N., & Zhou, X. (2020). Inter-Annual Variability of
Winter Precipitation Over Nepal Coupled With Ocean-Atmospheric Patterns During
1987–2015. Frontiers in Earth Science, 8.
https://doi.org/10.3389/feart.2020.00161
Horel, J.D. (1981). Planetary-scale atmospheric phenomena
associated with the interannual variability of sea surface temperature in the
equatorial Pacific.
Jiao, D., Xu, N., Yang, F.,
& Xu, K. (2021). Evaluation of spatial-temporal variation performance of
ERA5 precipitation data in China. Scientific
Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-97432-y
Karoly, B.J.H. (1981). The steady linear response of a Spherical
Atmosphere to Thermal and Orographic Forcing.
Krishnamurthy, V., &
Shukla, J. (2000). Intraseasonal and interannual variability of rainfall over
India. Journal of Climate, 13(24),
4366–4377. https://doi.org/10.1175/1520-0442(2000)013<0001:IAIVOR>2.0.CO;2
Lang, T.J., & Barros,
A.P. (2004). Winter storms in the central Himalayas. Journal of the Meteorological Society of Japan, 82(3), 829–844.
https://doi.org/10.2151/jmsj.2004.829
Lim, E.S., Wong, C.J.,
Abdullah, K., & Poon, W. K. (2011). Relationship between outgoing longwave
radiation and rainfall in South East Asia by using NOAA and TRMM satellite. IEEE Colloquium on Humanities, Science and
Engineering, 785–790. https://doi.org/10.1109/CHUSER.2011.6163843
Lorenz, E.N. (1956). Empirical orthogonal functions and
statistical weather prediction. In Technical report Statistical Forecast
Project Report 1 Department of Meteorology MIT.
Lu, B., Li, H., Wu, J.,
Zhang, T., Liu, J., Liu, B., Chen, Y., & Baishan, J. (2019). Impact of El
Niño and Southern Oscillation on the summer precipitation over Northwest China.
Atmospheric Science Letters, 20(8),
1–8. https://doi.org/10.1002/asl.928
Mariotti, A., &
Dell’Aquila, A. (2012). Decadal climate variability in the Mediterranean
region: Roles of large-scale forcings and regional processes. Climate Dynamics, 38(5–6), 1129–1145.
https://doi.org/10.1007/S00382-011-1056-7
Mie Sein, Z.M., Islam,
A.R.M.T., Maw, K.W., & Moya, T.B. (2015). Characterization of southwest
monsoon onset over Myanmar. Meteorology
and Atmospheric Physics, 127(5), 587–603.
https://doi.org/10.1007/s00703-015-0386-0
Nageswararao, M.M.,
Mohanty, U.C., Osuri, K.K., & Ramakrishna, S.S.V.S. (2016). Prediction of
winter precipitation over northwest India using ocean heat fluxes. Climate Dynamics, 47(7–8), 2253–2271.
https://doi.org/10.1007/s00382-015-2962-x
Ngar-Cheung Lau and Mary Jo
Nath. (1994). A modeling study of the
relative roles of tropical and extratropical SST anomalies in the variability
of the global atmosphere-ocean system.
Oo, K.T., & Thin, M.M.Z.
(2022). Climate Change Perspective: The Advantage and Disadvantage of COVID-19
Pandemic. Journal of Sustainability and
Environmental Management, 1(2), 275-291.
Saji, N. H., Goswami, P.
N., Vinayachandran, P. N., & Yamagata, T. (1999). Saji,N.A et al,.dipole
mode in the tropical Indian ocean. Nature,
401, 360–363.
http://www.nature.com/doifinder/10.1038/43854%0Apapers3://publication/doi/10.1038/43854
Sein, K. K., Chidthaisong,
A., & Oo, K.L. (2018). Observed trends and changes in temperature and
precipitation extreme indices over Myanmar. Atmosphere,
9(12). https://doi.org/10.3390/atmos9120477
Sein, Z.M.M., Ogwang, B.,
Ongoma, V., Ogou, F.K., & Batebana, K. (2015). Inter-annual variability of
May-October rainfall over Myanmar in relation to IOD and ENSO. Journal of Environmental and Agricultural
Sciences, 4, 28–36.
Sen Roy, N., & Kaur, S.
(2000). Climatology of monsoon rains of Myanmar (Burma). International Journal of Climatology, 20(8),913–928.
https://doi.org/10.1002/1097-0088(20000630)20:8<913::AID-JOC485>3.0.CO;2-U
Sen Roy, S. (2006). The
impacts of ENSO, PDO, and local SSTS on winter precipitation in India. Physical Geography, 27(5), 464–474.
https://doi.org/10.2747/0272-3646.27.5.464
Shen, Z., Shi, J., &
Lei, Y. (2017). Comparison of the Long-Range Climate Memory in Outgoing
Longwave Radiation over the Tibetan Plateau and the Indian Monsoon Region. Advances in Meteorology. https://doi.org/10.1155/2017/7637351
Thériault, J. M., &
Stewart, R. E. (2007). On the effects of vertical air velocity on winter
precipitation types. Natural Hazards and
Earth System Science, 7(2), 231–242.
https://doi.org/10.5194/nhess-7-231-2007
Tošić, I., Hrnjak, I.,
Gavrilov, M. B., Unkašević, M., Marković, S. B., & Lukić, T. (2013). Annual
and seasonal variability of precipitation in Vojvodina, Serbia. Theoretical and Applied Climatology, 117(1),
331–341. https://doi.org/10.1007/s00704-013-1007-9
Wang, W., Zhou, W., Wang,
X., Fong, S.K., & Leong, K.C. (2013). Summer high temperature extremes in
Southeast China associated with the East Asian jet stream and circumglobal
teleconnection. Journal of Geophysical
Research Atmospheres, 118(15), 8306–8319. https://doi.org/10.1002/JGRD.50633
Xoplaki, E.,
González-Rouco, J.F., Luterbacher, J., & Wanner, H. (2004). Wet season
Mediterranean precipitation variability: Influence of large-scale dynamics and
trends. Climate Dynamics, 23(1),
63–78. https://doi.org/10.1007/s00382-004-0422-0
Yadav, R.K., Rupa Kumar,
K., & Rajeevan, M. (2009). Out-of-phase relationships between convection
over northwest India and warm pool region during the winter season. International Journal of Climatology, 29(9),
1330–1338. https://doi.org/10.1002/JOC.1783
Yadav, R.K., Rupa Kumar,
K., & Rajeevan, M. (2012). Characteristic features of winter precipitation
and its variability over northwest India. Journal
of Earth System Science, 121(3), 611–623.
https://doi.org/10.1007/s12040-012-0184-8
Yang, J., Liu, Q., Xie, S.P.,
Liu, Z., & Wu, L. (2007). Impact of the Indian Ocean SST basin mode on the
Asian summer monsoon. Geophysical
Research Letters, 34(2). https://doi.org/10.1029/2006GL028571
Zaw, Z., Fan, Z.X.,
Bräuning, A., Liu, W., Gaire, N.P., Than, K. Z., & Panthi, S. (2021).
Monsoon precipitation variations in Myanmar since AD 1770: linkage to tropical
ocean‐atmospheric circulations. Climate
Dynamics, 56(9–10), 3337–3352. https://doi.org/10.1007/s00382-021-05645-8
Zhou, X., Wang, W., Ding,
R., Li, J., Hou, Z., & Xie, W. (2019). An investigation of the differences
between the North American dipole and North Atlantic Oscillation. Atmosphere, 10(2).
https://doi.org/10.3390/atmos10020058
Zin, E. E., Aung, L. L.,
Zin, E. E., Theingi, P., Elvera, N., Aung, P. P., Han, T. T., Oo, Y., &
Skaland, R. G. (2017). Myanmar Climate Report. Norwgian Meterological Institute, 9, 105.
http://files/679/MyanmarClimateReportFINAL11Oct2017.pdf
Zin, E. E., Aung, L. L., Zin, E. E., Theingi, P., Elvera, N., Aung, P. P., Han, T. T., Oo, Y., Skaland, R. G., & Aung, L. L.; Zin, E. E.;Theingi, P.;Elvera, N.; Aung, P.; Han, T.; Oo, Y.; Skaland, R. (2017). Myanmar Climate Report. Norwgian Meterological Institute, 9, 105. http://files/679/MyanmarClimateReportFINAL11Oct2017.pdf
|
©
The Author(s)
2022. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. |